

TARGT First LIQUID

TEST REPORT

SCOPE OF THE TEST

SNVs, InDels, CNAs, Gene Fusions status

CLINICAL INDICATION

Endometrium Carcinoma

REPORT DETAILS

Name : SAHIYA HAMID

Cancer Celltype : Endometrioid carcinoma

Gender : Female

Sample Source : Whole Blood

Age/DOB : 67 Years

Consulting Clinician : Dr. Mahendra Perera

Reporting Date : 02/07/2025

Hospital : Aegle Omics (Private) Limited, Sri Lanka

RESULTS
GENOMIC FINDINGS FROM LIQUID BIOPSY PROFILING
Genomic Alteration

 CHEK2 Exon 14 (p.Arg517Cys)
 Allelic burden: 2%

Relevant Therapies (in Same Cancer Type)

Therapy	Clinical Relevance
NA	NA

Relevant Therapies (in Different Cancer)

Therapy	Clinical Relevance	Cancer Type
Talazoparib with enzalutamide	RESPONSIVE	Prostate cancer
Olaparib	RESPONSIVE	Prostate cancer

*NA: Not Applicable

PROGNOSTIC BIOMARKERS
Genomic Alteration
Prognostic Significance

Clinically relevant genomic alterations associated with prognostic significance were not detected.

Amino acids Table:

Ala - A	Arg - R	Asn - N	Asp - D	Cys - C	Glu - E	Gln - Q	Gly - G	His - H	Ile - I
Leu - L	Lys - K	Met - M	Phe - F	Pro - P	Ser - S	Thr - T	Trp - W	Tyr - Y	Val - V

VARIANT DETAILS:

Gene	Variant Location	Variant Consequence	Clinical Significance	Variant Type	Reference
CHEK2	chr22:g.29090061G>A, ENST00000382580, Exon 14	c.1549C>T, p.Arg517Cys, 2%	Likely Pathogenic	Nonsynonymous SNV	rs540635787, VCV000128059.77, ACMG/AMP Guidelines
CHEK2	chr22:g.29121045T>C, ENST00000382580, Exon 5	c.641A>G, p.Asn214Ser, 1%	VUS	Nonsynonymous SNV	rs2146059474, VCV001049312.5, ACMG/AMP Guidelines

*NA: Not Applicable

Amino acids Table:

Ala - A	Arg - R	Asn - N	Asp - D	Cys - C	Glu - E	Gln - Q	Gly - G	His - H	Ile - I
Leu - L	Lys - K	Met - M	Phe - F	Pro - P	Ser - S	Thr - T	Trp - W	Tyr - Y	Val - V

ALTERATIONS WITH CLINICALLY RELEVANT THERAPIES

Gene (Alterations) - Drug association

- CHEK2:**

Talazoparib with enzalutamide - RESPONSIVE
 Prostate cancer

Summary

The drugs talazoparib with enzalutamide have been approved for homologous recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer (mCRPC) (FDA).

The approval was based on the clinical study TALAPRO-2 (NCT03395197), a randomized, double-blind, placebo-controlled, multi-cohort trial enrolling 399 patients with HRR gene-mutated mCRPC. A statistically significant improvement in rPFS for talazoparib with enzalutamide compared to placebo with enzalutamide was observed in the HRR gene-mutated population with a median that was not reached vs 13.8 months (HR 0.45; 95% CI: 0.33, 0.61; p<0.0001). In an exploratory analysis by *BRCA* mutation status, the hazard ratio for rPFS in patients with *BRCA*-mutated mCRPC (n=155) was 0.20 (95% CI: 0.11, 0.36) and, in patients with non-BRCAm HRR gene-mutated mCRPC, was 0.72 (0.49, 1.07).

- CHEK2 Mutation/Deletion :**

Olaparib - RESPONSIVE
 Prostate cancer

The drug olaparib has been approved for the treatment of adult patients with deleterious or suspected deleterious germline or somatic homologous recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer, who show disease progression after enzalutamide or abiraterone treatment (FDA).

The approval was based on the clinical study PROfound (NCT02987543). The study included patients harbouring *BRCA1*, *BRCA2* and *ATM* mutations (cohort A) and patients harbouring mutations in 12 genes related to HRR pathway (cohort B). A median of 7.4 months progression free survival was recorded based on imaging (HR0.34; 95% CI, 0.25, 0.47; p<0.001) with median overall survival of 18.5 months in cohort A. Olaparib treatment had shown a good response in both cohorts A and B.

Amino acids Table:

Ala - A	Arg - R	Asn - N	Asp - D	Cys - C	Glu - E	Gln - Q	Gly - G	His - H	Ile - I
Leu - L	Lys - K	Met - M	Phe - F	Pro - P	Ser - S	Thr - T	Trp - W	Tyr - Y	Val - V

REFERENCES

- AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine through an International Consortium.doi: 10.1158/2159-8290.CD-17-0151. PMID:28572459
- Hampel H, et al. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment.doi: 10.1038/gim.2014.147. PMID:25394175
- Hoffman-Andrews L. The known unknown: the challenges of genetic variants of uncertain significance in clinical practice.doi: 10.1093/jlb/lsx038. PMID:29868193
- Landrum MJ, et al. ClinVar: public archive of interpretations of clinically relevant variants.doi: 10.1093/nar/gkv1222. PMID:26582918
- Li MM, et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists.doi: 10.1016/j.jmoldx.2016.10.002. PMID:27993330
- Nykamp K, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria.doi: 10.1038/gim.2017.37. PMID:28492532
- Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.doi: 10.1038/gim.2015.30. PMID:25741868
- Spratt DE, et al. Racial/Ethnic Disparities in Genomic Sequencing.doi: 10.1001/jamaoncol.2016.1854. PMID:27366979
- UniProt Consortium. UniProt: a worldwide hub of protein knowledge.doi: 10.1093/nar/gky1049. PMID:30395287

(Electronically signed by)

Dr. Sharmina Saleem
 MD, FRCPath, Medical Director

(Electronically signed by)

Vyomesh Javle
 Head - Clinical Bioinformatics

(Electronically signed by)

Vidya H Veldore, PhD
 Vice President - Clinical Operations

* Note : This is a system generated report, hence physical signatures are not required.

Amino acids Table:

Ala - A	Arg - R	Asn - N	Asp - D	Cys - C	Glu - E	Gln - Q	Gly - G	His - H	Ile - I
Leu - L	Lys - K	Met - M	Phe - F	Pro - P	Ser - S	Thr - T	Trp - W	Tyr - Y	Val - V

TEST DESCRIPTION

TARGT First Liquid is a Next Generation Sequencing based test which identifies genetic alterations in a comprehensive panel of well curated 72 genes which are having an impact response to approved therapy for a particular cancer type. Some of the alterations detected may have bearing on prognosis and/or therapeutic options and may provide relevant information that allows oncologists/clinicians to consider various lines of targeted treatment for the patient.

GENES EVALUATED

TARGT First Liquid detects mutations (SNVs and Short InDels), Copy Number Variations (CNVs), Gene Fusions and splice variants in the 72 genes:

SNVs, SHORT INDELS and CNVs Covered in TARGT First Liquid

ABL1	ALK	APC	AR	ATM	BARD1	BMPR1A	BRAF	BRCA1	BRCA2
<i>BRIP1</i>	<i>CDK12</i>	<i>CDK4</i>	<i>CDK6</i>	<i>CDKN2A</i>	<i>CHEK1</i>	<i>CHEK2</i>	<i>CTNNB1</i>	<i>EGFR</i>	<i>EPCAM</i>
<i>ERBB2</i>	<i>ERBB3</i>	<i>EZH2</i>	<i>FANCL</i>	<i>FGFR1</i>	<i>FGFR2</i>	<i>FGFR3</i>	<i>GAPDH</i>	<i>IDH1</i>	<i>IDH2</i>
<i>JAK2</i>	<i>KIT</i>	<i>KRAS</i>	<i>MAP2K1</i>	<i>MAP2K2</i>	<i>MDM2</i>	<i>MET</i>	<i>MLH1</i>	<i>MLH3</i>	<i>MSH2</i>
<i>MSH6</i>	<i>MUTYH</i>	<i>NRAS</i>	<i>PALB2</i>	<i>PDGFRA</i>	<i>PDGFRB</i>	<i>PIK3CA</i>	<i>PMS1</i>	<i>PMS2</i>	<i>POLD1</i>
<i>POLE</i>	<i>POLH</i>	<i>PTEN</i>	<i>RAD50</i>	<i>RAD51</i>	<i>RAD51B</i>	<i>RAD51C</i>	<i>RAD51D</i>	<i>RAD54L</i>	<i>RB1</i>
<i>RET</i>	<i>ROS1</i>	<i>SMAD4</i>	<i>STK11</i>	<i>TP53</i>	<i>TSC1</i>	<i>TSC2</i>			

Gene Fusions/Splicing Variations Covered in TARGT First Liquid

ALK	<i>FGFR2</i>	<i>FGFR3</i>	MET	<i>NRG1</i>	<i>NRG2</i>	<i>NTRK1</i>	<i>NTRK2</i>	<i>NTRK3</i>	<i>RET</i>
	<i>ROS1</i>								

TEST METHODOLOGY

Sample preparation and Library preparation :

Circulating tumor DNA (ctDNA) isolated from plasma, derived from whole blood was used to perform targeted gene capture using a custom capture kit. The libraries were sequenced to mean >1000X coverage on Element sequencing platform.

Bioinformatics Analysis and Reporting :

The sequences obtained are aligned to human reference genome (GRCh37/hg19) and variant analysis was performed using set of Bioinformatics Pipeline. Only non-synonymous and splice site variants found in the panel consisting of specific set of genes were used for clinical interpretation. Silent variations that do not result in any change in amino acid in the coding region are not reported. Clinically relevant mutations were annotated using published variants in literature and a set of databases – ClinVar, COSMIC and dbSNP. Common variants are filtered based on allele frequency in 1000 Genome Phase 3, ExAC, dbSNP, gnomAD, etc. In the absence of a clinically significant reported known variation(s), pathogenicity will be predicted based on *in-silico* gene prioritization tools: CADD, SIFT, PolyPhen-2, Condel and Mutation taster and prioritized for clinical correlation. The identified pathogenic variant will be correlated with observed phenotypic features of the patient and interpreted according to ACMG/AMP guidelines.

Somatic variants are classified into three tiers based on their level of clinical significance in cancer diagnosis, prognosis, and/or therapeutics as per international guidelines: ACMG, ASCO, AMP, CAP, NCCN and ESMO.

Amino acids Table:

Ala - A	Arg - R	Asn - N	Asp - D	Cys - C	Glu - E	Gln - Q	Gly - G	His - H	Ile - I
Leu - L	Lys - K	Met - M	Phe - F	Pro - P	Ser - S	Thr - T	Trp - W	Tyr - Y	Val - V

LIMITATIONS AND DISCLAIMER

- TARGT First Liquid test has been developed, validated by 4baseCare Precision Health and has been re-validated and offered for testing at Innovate Life Sciences FZ-LLC, (Dubai). This test has not been cleared or approved by the FDA.
- The identified pathogenic variant will be correlated with observed phenotypic features of the patient and interpreted according to AMP guidelines.
- We are using the canonical transcript for clinical reporting which is usually the longest coding transcript with strong/multiple supporting evidence. However, in rare cases, clinically relevant variants annotated in alternate complete coding transcripts could also be reported.
- The CNVs detected must be confirmed by an alternate method, such as IHC, for further clinical management decision.
- A negative result does not rule out the possibility of mutations in the patient's tumor tissue.
- Our limit of detection for TARGT First Liquid is 1% for SNVs, 5% for InDels and CNV gain ≥ 6 . In addition to this, sequencing quality and coverage is dependent on many factors such as homopolymers, GC-rich regions, intrinsic quality of DNA might impact the variant detection.
- Certain genes may not be covered completely, and few mutations could be missed. A negative result cannot rule out the possibility that the tested tumor sample carries mutations that are not previously associated with cancer and hence not included in the panel.
- DNA studies do not constitute a definitive test for the selected condition(s) in all individuals. It should be realized that there are possible sources of error. Errors can result from trace contamination, rare technical errors, rare genetic variants that interfere with analysis, recent scientific developments, and alternative classification systems. This should be one of the many aspects used by the healthcare provider to help with a diagnosis and treatment plan.
- The contents of this test should be carefully assessed by the treating physician and further interpreted along with clinical, histopathological findings, contraindications and guidelines before deciding the course of therapy.

End of Report

Amino acids Table:

Ala - A	Arg - R	Asn - N	Asp - D	Cys - C	Glu - E	Gln - Q	Gly - G	His - H	Ile - I
Leu - L	Lys - K	Met - M	Phe - F	Pro - P	Ser - S	Thr - T	Trp - W	Tyr - Y	Val - V